9,996 research outputs found

    The Intensity Matching Approach: A Tractable Stochastic Geometry Approximation to System-Level Analysis of Cellular Networks

    Full text link
    The intensity matching approach for tractable performance evaluation and optimization of cellular networks is introduced. It assumes that the base stations are modeled as points of a Poisson point process and leverages stochastic geometry for system-level analysis. Its rationale relies on observing that system-level performance is determined by the intensity measure of transformations of the underlaying spatial Poisson point process. By approximating the original system model with a simplified one, whose performance is determined by a mathematically convenient intensity measure, tractable yet accurate integral expressions for computing area spectral efficiency and potential throughput are provided. The considered system model accounts for many practical aspects that, for tractability, are typically neglected, e.g., line-of-sight and non-line-of-sight propagation, antenna radiation patterns, traffic load, practical cell associations, general fading channels. The proposed approach, more importantly, is conveniently formulated for unveiling the impact of several system parameters, e.g., the density of base stations and blockages. The effectiveness of this novel and general methodology is validated with the aid of empirical data for the locations of base stations and for the footprints of buildings in dense urban environments.Comment: Submitted for Journal Publicatio

    Quantum Criticality of one-dimensional multicomponent Fermi Gas with Strongly Attractive Interaction

    Full text link
    Quantum criticality of strongly attractive Fermi gas with SU(3)SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations.The phase transitions driven by the chemical potential μ\mu, effective magnetic field H1H_1, H2H_2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the thermodynamic Bethe ansatz equations in zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2z=2 and correlation length exponent ν=1/2\nu=1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multi-component Fermi gases with SU(N)SU(N) symmetry.Comment: 20 pages, 5 figures, submitted to J.Phys.A, revised versio
    corecore